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Introduction



Generative Models

Generative models are defined as algorithms that model data
distributions p(x).
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Generative Modeling Framework

1. There is a data set of observations x.
2. The observations are assumed to have been generated by some
unknown distribution pr.

3. The generative model pg tries to learn pr. If successful, pg can be
used to generate observations that appear to have been drawn
from pr.

4. A proper generative model should:
4.1 Generate examples that could plausibly have been drawn from pr.
4.2 Generate examples different from the original observations x.
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Generative Models Tree

Generative models are defined as algorithms that model data
distributions p(x).

Figure 1: Caption
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Generative Adversarial Networks



The Framework

Two deep neural networks compete with each other. The Generator,
G tries to output fake data that seems as real as possible while the
Discriminator, D, tries to correctly classify real data as real and fake
data (provided by G) as fake.
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The Definitions

• We have Pdata
• Z is latent dimension
• We define G : Z→ X, where X is the domain of Pdata
• We define D : X→ [0, 1]
• G and D compete. Pg1 converges to Pdata in the limit.

1Pg is the distribution induced by G
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The Equation

min
G

max
D
Ex∼pr(x)[log(D(x)] + Ez∼pz(z)[log(1− D(G(z)))] (1)
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The Ideal

Figure 2: GAN Progression
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The Architecture

Figure 3: GAN architecture
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The Algorithm

Algorithm 1: GAN Algorithm
Require: The number of steps to apply to the discriminator, k, is a
hyperparameter. The number of samples in the minibatch, m.;
for number of training iterations do

for k steps do
• Sample minibatch of m noise samples z(1), z(1), ..., z(m) from noise prior
pg(z)

• Sample minibatch of m examples x(1), x(1), ..., x(m) from data generating
distribution

• Update the discriminator by ascending its stochastic gradients:

∇θd

1
m

m∑
n=1

log(D(xi) + log(1− D(G(zi)))

end
• Sample minibatch of m noise samples z(1), z(1), ..., z(m) from noise prior
pg(z)

• Update the generator by descending its stochastic gradient:

∇θg

1
m

m∑
n=1

log(1− D(G(zi)))

end
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The Problems

The biggest problem facing GANs is the issue of non-convergence
[15]. GANs have a number of common failures and all of these are
active areas of research.
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Hard to Achieve Nash Equilibrium

Two agents are trained to find a Nash Equilibrium to a two-player
non-cooperative game, and as such, updating via gradient descent
does not guarantee convergence due to the high-dimensional,
non-convex nature of the cost function induced by the parameters
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Low Support Manifolds

The dimensions of real world data sets usually have their support on
low dimensional manifolds. Intuitively, pdata and pg have supports
that rest in low dimensional manifolds and almost certainly are
going to be disjoint. This phenomenon has the effect of making the
distances between distributions work poorly because they have
disjoint supports
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Low Support Manifolds

Figure 4: Low Dimensional Supports. In high dimensional spaces, the
support of the real distribution Pr and the generated distribution Pg are
oǒten disjoint, as observed on the leǒt, or negligible (intersection has
measure 0), as on the right. Image source [17]
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Vanishing Gradients

pdata and pg have supports that rest in low dimensional manifolds
and almost certainly are going to be disjoint and therefore we are
always capable of finding a so-called Perfect Discriminator2. A
perfect Discriminator produces vanishing gradients, as shown in

2A perfect discriminator is a discriminator that separates real and fake samples
correctly every time.
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Low Support Manifolds

Figure 5: Various gradients that correspond to GAN and WGAN losses. It
should be noted that an almost zero gradient is obtained via regular GAN
methods, as illustrated by a red line. A linear (constant, non-zero, gradient)
is obtained with WGAN methods, as described by the teal line. Image source:
[2]
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Mode Collapse

The generator’s task is successfully completed whenever it can trick
the discriminator into classifying fake samples as real. Such a task
does not imply generalization. The generator can perform very well
even when it is stuck in small spaces with very low variety, as seen in
Figure 6.
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Mode Collapse

Figure 6: An instance of Mode Collapse, the Generator gets stuck in the
lowest blobs of the mixture, unable to reproduce the data from the upper
blobs. In this situation, it can still fool the discriminator as long as it closely
reproduces the data in these three blobs.
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Lack of a proper evaluation metric

Gradient descent methods depend on a series of discernible
objective functions that work for a predefined task. Either a
Regression or Classification model’s performance can usually be
tracked.
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Lack of a proper evaluation metric

How to ”objectively” measure a generative model’s output? How can
we compare them?

20



Empirical Recommendations [13]

• Use Strided Convolutions.

• Remove fully-connected layers.
• Use batch Normalization.
• Use ReLu, Leaky ReLu, and Tanh.
• Use Adam Optimization.
• Train with labels.
• Balance G and D.
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Theoretical Recommendations [1]

• Add noise to Discriminator Input.

• Use a weaker distance metric.
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What does the original GAN actually do?

The original GAN minimizes the JS divergence (defined below)
between the distribution of real and fake examples [7]
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Distance Between Distributions

There are many ways to measure them:

• Total variation distance

δ(Pr,Pg) = sup
A∈Σ
|Pr(A)− Pg(A)| (2)

• Kullback-Leibler (KL) divergence

KL(Pr∥Pg) =
∫

log(
Pr(x)
Pg(x)

)Pr(x)dµ(x) (3)

Both Pr and Pg are assumed to be absolutely continuous with
respect to the same measure µ defined on X. KL divergence is
asymmetric and can have infinite values.
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Distance Between Distributions

There are many ways to measure them:

• Jensen-Shannon (JS)

JS(Pr,Pg) = KL(Pr∥Pm) + KL(Pg∥Pm) (4)

where Pm is the mixture Pr+Pg
2 . This divergence is symmetrical.

• Eart-Mover or Wasserstein distance

W(Pr,Pg) = inf
γ∈

∏
(Pr,Pg)

E(x,y)∼γ [∥x− y∥] (5)

Where
∏
(Pr,Pg) denotes the set of all joint distributions γ(x, y)

whose marginals are respectively Pr and Pg. The Wasserstein
distance is in itself an optimization problem representing the
minimum cost of transporting mass to convert one distribution
into another.
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The Impact of Choice Between Them

The most fundamental difference between them is their impact on
the convergence of sequences of probability distributions.
Wasserstein distance is weakest among these3 . [2].

3The relative strength of an induced topology understood as how hard it is for
sequences of probability distributions to converge.
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Example

Let Z ∼ U[0, 1] the uniform distribution on the unit interval. Let P0 be
the distribution of (0, Z) ∈ R2, uniform on a straight vertical line
passing through the origin. Let gθ(z) = (θ, z) with θ a single real
parameter.

x
θ

Figure 7: Parallel lines separated by a horizontal distance θ.
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Example Distances

W(P0,Pθ) = |θ|

JS(P0,Pθ) =
{
log(2), if θ ̸= 0
0, if θ = 0

KL(P0,Pθ) =
{
+∞, if θ ̸= 0
0, if θ = 0

δ(P0,Pθ) =
{
1, if θ ̸= 0
0, if θ = 0

28



Distances

Figure 8: From leǒt to right, distance as measured by Wasserstein and
Jensen-Shannon divergence between the distributions in Example 1. Image
source: [2]
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The Real Problem

This result holds not only when distributions have disjoint supports
but also, more generally, when their intersection is contained in a set
of measure zero, which is almost always the case when two low
dimensional manifolds intersect [1].
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Why Wasserstein then?

Wasserstein distance between the distribution of real and fake
examples is continuous everywhere and differentiable almost
everywhere [2] and thus provides a reliable linear gradient that
guarantees constant updates to the generator’s parameters.
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What Issues Arise?

Direct application of Wasserstein distance definition poses a highly
intractable optimization problem.
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Kantorovich-Rubinstein

The Kantorovich-Rubinstein duality, which tells us that:

W(Pr,Pg) = sup
∥f∥L≤1

Ex∼Pr [f(x)]− Ez∼Pz [fw(gθ(z)))] (6)

where f belongs to the 1-Lipschitz set of functions such that f : X→ R.
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A Caveat

If f belongs to the class of K-Lipschitz functions, then the expression
above corresponds to the Wasserstein distance multiplied by K [2].
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Existence of f

Theorem (Existence of f)
Let Pr be any distribution. Let Pθ be the distribution of gθ(Z) with Z
being a random variable with density p and gθ a function satisfying
Assumption 14.

Then, there is a solution f : X→ R to the problem

max
∥f∥L≤1

Ex∼Pr [f(x)]− Ex∼Pθ [f(x))]

and we have
∇θW(Pr,Pg) = −Ez∼p(z)[∇θf(gθ(z)]

when both terms are well-defined.

4See Appendix
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W must satisfy compactness

• f5, parametrized by w, that solves this problem has its weights
lying on a compact space.

• Compactness enforces the K-Lipschitz condition fw for every
w ∈ W for some K that depends only on W and the Critic’s
capacity [2].

5At this point, the name is changed from Discriminator to Critic
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How to enforce compactness?

Weight Clipping6

6Element-wise values to a range of values determined and therefore making all
parameters be inside the [−c, c] interval.
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In Summary

• The change in objective function:

min
G

max
∥f∥L≤1

Ex∼Pr [f(x)]− Ez∼Pz [fw(Gθ(z)))]

• The clipping determined by hyperparameter c.
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WGAN Architecture

Figure 9: Wasserstein GAN architecture
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Improvements

Several improvements are reported with respect to traditional GAN
[2]:

• Improved stability

• Less mode collapse
• Discriminator’s Loss correlated with Image Quality
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A Direct Quote

‘Weight clipping is clearly a terrible way of enforcing com-
pactness’ [2]
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What to do?

Enforce Gradient Penalty based on the following results [8]
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Wasserstein GAN’s gradient properties

Theorem (WGAN Gradient’s Property)
Let Pr and Pg be any two distributions in X, a compact space. Then
there is a 1-Lipschitz function f∗ which is the optimal solution of the
expression max∥f∥L≤1 Ey∼Pr [f(y)]− Ex∼Pθ [f(x)]. Let π be the optimal
coupling between Pr and Pg, the minimizer of

W(Pr,Pg) = inf
π∈

∏
(Pr,Pg)

E(x,y)∼γ [∥x− y∥],

where
∏
(Pr,Pg) is the set of joint distributions π(x, y). If f∗ is

differentiable and π(x = y) = 0, then it holds that
P(x,y)∼π[∇f∗(xt) = y−xt

∥y−xt∥ ] = 1 where xt = tx+ (1− t)y with 0 ≤ t ≤ 1.

43



Corollary

Corollary
f∗ has gradient norm 1 almost everywhere under Pr and Pg.
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The New Crtic

The new Critic Loss the becomes:

LD = Ex[D(x)]− E[D(G(z))] + γ(||∇x̂D(x̂)|| − 1)2 (7)

where the sampling distribution Px̂ samples uniformly along straight
lines between pairs of points from Pr and Pg:

x̂ = ϵx+ (1− ϵ)G(z) (8)
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In Summary

• The optimal WGAN critic has unit gradient norm almost
everywhere under the real and generated data distributions

• Constrain the critic’s gradient norm.
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WGAN vs. WGAN-GP

Figure 10: Top row: Wasserstein GAN’s learned value surfaces trained to
optimality in several toy datasets. Bottom row: Wasserstein GAN with
Gradient Penalty value surfaces trained on the same toy datasets. Image
source: [8]
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The WGAN-GP Algorithm

Algorithm 2: WGAN-GP Algorithm
Require:The gradient penalty coefficient λ, the number of critic
iterations per generator iteration ncritic, the batch size m, Adam
hyperparameters α, β1, β2;
Require: w0, initial critic parameters. θ0, initial generator’s parameters;
while θ has not converged do

for t = 0, . . . ,ncritic do
for i = 1, ·,m do

• Sample real data x ∼ Pr
• Sample latent variable z ∼ p(z)
• Sample a random number ϵ ∼ U[0, 1]
• ~x← Gθ(z)
• x̂← ϵx+ (1− ϵ)~x
• L(i) ← Dw(x̃)− Dw(x) + λ(||∇x̂Dw(x̂)||2 − 1)2

end
w← Adam(∇w

1
m
∑m

i=1 L(i),w, α, β1, β2)
end
• Sample a batch of latent variables {z(i)}mi=1 ∼ p(z).
• θ ← Adam(∇θ

1
m
∑m

i=1−Dw(Gθ(z)), θ, α, β1, β2)
end
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Evaluation Measures

Inception Score and Frechet Inception Distance both depend on
InceptionV3 network. A pre-trained deep learning neural network
model for image classification.
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Inception Score

1. The images generated should contain clear objects, or p(y|x)
should be low entropy. The Inception Network should be highly
confident there is a meaningful object in the image.

2. The generative model should output a high diversity of images
from all the different classes in ImageNet, or p(y) should be high
entropy.
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Inception Score

The generator model should reliably output a high variety of
high-quality meaningful objects.
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Frechet Inception Distance

The distance between the distributions (real and generated) is then
calculated using the Frechet Distance7:

FID = ∥µr − µg∥2 + Tr(Σr +Σg − 2(ΣrΣg)
1
2 ) (9)

where Xr ∼ N(µr,Σr) and Xg ∼ N(µg.Σg) are the 2048-dimensional
activations of the Inception-v3 pool3 layer [9].

7Also known as Wasserstein-2 distance
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Experiments



Toy Data

Figure 11: Toy Data used for this Section
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Parabolas

Figure 12: Parabola distribution
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Circle

Figure 13: Circle distribution

55



Mixture

Figure 14: Mixture distribution
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Mixture

Figure 15: Random Blobs distribution
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Circles

Figure 16: Circles distribution
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Moons

Figure 17: Moons distribution
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Spiral

Figure 18: Spiral distribution
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S Curve

Figure 19: S curve distribution
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Applications



Sample of MNIST

Figure 20: A sample from MNIST
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MNIST

Figure 21: MNIST progression for the same z sampled evey 5 epochs. Epochs
0 to 40 shown.
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MNIST

Figure 22: MNIST progression for the same z sampled evey 5 epochs. Epochs
45 to 95 shown.
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MNIST

Figure 23: MNIST progression for the same z sampled evey 5 epochs. Epochs
100 to 140 shown.
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MNIST

Figure 24: MNIST Sample results.
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MNIST plots

Figure 25: MNIST plots
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Sample of CARS196

Figure 26: A sample from CARS196 [10]
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CARS

Figure 27: Samples from CARS Generator. Fixed z, sampled every 50 epochs
from 0 to 400.
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CARS

Figure 28: Samples from CARS Generator. Fixed z, sampled every 50 epochs
from 450 to 900. 70



CARS Results

Figure 29: Samples from CARS Generator.
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Additional Remarks



Generalization

Generalization properties of GANs are not well understood [16]. In
[3], it is shown that training of GANs may not have good
generalization properties, in contrast to what was suggested in the
foundational paper [7], that is, GANs learn the distribution if the deep
nets are sufficiently large. Theoretical analysis in [3] showed that the
training objective can approach its optimum value even if the
generated distribution suffers from mode collapse.
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The GAN Zoo

There are many types of GANs and it is hard to classify them. They
can be classified according to their objective (e.g. MuseGAN for
music) and their architecture (e.g. SN-GAN [12]) or their type (e.g.
Conditional GAN [11])
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Medical Data Augmentation

Figure 30: Liver Lessions, generated. Improved Classifier. Source: [6]
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Fashion

Figure 31: Generated Models. Source: Zalando Research
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Text to Image Synthesis

Figure 32: Text to image synthesis for flowers and birds. Source: [14]
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Video Generation

Figure 33: 48 frames of generated watermelon video. Source: [5]
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State of the Art

GAN research has been overwhelmingly focused on image
generation, the state of the art, as of today, corresponds to Latent
Optimization GAN [18], which applies the SN-GAN methodology with
latent optimization. Previous SOTA was BigGAN [4], that used only
SN-GAN and the biggest architecture to date.
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Conclusion



Conclusion

GAN’s and their variants have proven to be a Generative model with
very high potential and applicability. From data augmentation to
media synthesis, this generative modeling framework is growing
each day, improving and breaking new barriers. There are still some
difficult challenges ahead but steady progress is being made towards
solving these issues; although the GAN world can look messy and
aimless, several winning ideas are starting to emerge.
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Questions?
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Assumption 1

Let g : Z× Rd → X be locally Lipschitz between finite dimensional
vector spaces and denote by gθ(z) it’s evaluation con coordinates
(z,θ). We say that g satisfies Assumption 1 For a certain probability
distribution p over Z if there are local Lipschitz constants L(θ,z) such
that:

Ez∼p[L(θ, z)] +∞.



Architectures - Experiments Discriminator

Figure 34: Experiments discriminator



Architectures - Experiments Generator

Figure 35: Experiments Generator



Architectures - MNIST Critic

Figure 36: MNIST Critic



Architectures - MNIST Generator

Figure 37: MNIST Generator



Architectures - CARS Critic

Figure 38: CARS critic



Architectures - CARS Genator

Figure 39: CARS Generator
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