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Introduction and Motivation

Need for interpretability
o Simple accuracy measures often fail to describe deeper flaws such as hidden biases and
false generalizations.

o Accountability, regulation (CDPR right to explanation)
o High stakes settings - can ML help make better decisions?

o Aid in detecting errors / model debugging
m Choosing between models

o High level of variability between
m [ypes of data
m |nvolved actors
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Introduction and Motivation

Interpretability / Accuracy tradeoff
o Simple models do not have the predictive power of more complex ones

A

Learning performance

Effectiveness of explanations
https://www.nature.com/articles/s42256-019-0048-x/figures/1
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Overview of Methods / Taxonomy

White vs Black boxes

o White-box models are those intrinsically interpretable models, where the logic of making a
decision is transparent and intelligible.
m Decision trees, linear regression

o Black-box models tend to have complex structures and are hard to understand
m Deep Neural Networks, Ensemble Models
m Post-Hoc techniques

Global vs Local Explanations
o Local explanations try to explain how a decision is made for a specific instance.
m LIME and SHAP (weight for each feature), counterfactuals

o Global explanation methods refer to showing the overall logical structure of a model.
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Overview of Methods

Interpretable Models
o Decision trees, linear regression, decision rules, GLMs.
m Still might be hard to interpret

Model agnostic (Post-hoc)
o Partial Dependence Plots (PDP)
m Shows the marginal effect one or two features have on the predicted outcome of a
machine learning model|

o Global surrogate model
m Interpretable model that is trained to approximate the predictions of a black box model

o Local feature importance
m Gives relative importance magnitudes of features around a desired point

o Counterfactuals
m Provide sets of changes that alter the model's prediction
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LIME

explanation(x) = arg Igl}lcl_} L(f,9,m) + $2(g)

o Generates a new dataset consisting of permuted samples and the corresponding
predictions of the black box model.

o Trains an interpretable model, which is weighted by the proximity of the sasmpled instances
to the instance of interest
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LIME

Prediction probabilities

edible | 0.00

poisonous _ 1.00

(a) Original Image
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edible poisONOUs

Feature Value
odor=foul True
gill-size=broad True
stalk-surface-above-ring=silky True
spore-print-color=chocolate =~ True
stalk-surface-below-ring=silky True

(b) Explaining FElectric guitar (c) Explaining Acoustic guitar  (d) Explaining Labrador

https://qithub.com/marcotcr/lime
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SHAP

higher & lower

base value model output

14.34 16.34 18.34 20.34 22.34 2441 26.34 28.34 30.34
PTRATIO = 15.3 LSTAT =4.98 RM=6.575' NOX =0.538 ' AGE =65.2 RAD =1

o Generalizes LIME, unifies it with Shapley values from coalitional game theory
o Considers effects of the feature values as they move the prediction away from the mean.

o Satisfies desirable properties (only feature attribution method that does so)
m Consistency, missingness, local accuracy

o |Intractable to compute exactly, uses perturbation methods
m Efficient and more accurate methods available for some models like Trees

o Has been widely adopted in practice

https://qgithub.com/slundbera/shap
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Counterfactual Methods

o Describes the smallest change to the feature values that changes the prediction to a

predefined output.
o Provide complete fidelity to the underlying model
o Only require query access

o General approach by Wachter et. al (2017)
L(z,z',y',A) = A- (f (¢') — ¥')*

o Are never really observed in real life.
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DiCE: Diverse Counterfactual Explanations

o Method for generating numerous diverse counterfactuals, which takes into account
usefulness and relative ease.

o Ramaravind K. Mothilal, Amit Sharma, Chenhao Tan

Counterfactual Examples

Original class: Desired class:
Loan rejected ot Loan approved

Original input

https://www.microsoft.com/en-us/research/blog/open-source-library-provides-explanation-for-machine-learning-through-diverse-counterfactuals/
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Objectives

o Framework for generating and evaluating counterfactual explanations.
m Based on determinantal point processes
m Properties: feasibility, diversity

o Provide metrics for evaluating and comparing counterfactual explanations
m Among sets of counterfactuals
m Against other explanation methods (LIME)

o Demonstrate effectiveness with experiments on multiple datasets.
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Background

o Explanations based on key features or feature importance don't help people decide what
to do next.

m Many based on proxy models - “lie” because of tradeoff between interpretability and
truthfulness

e EX LIME, SHAP, LORE, Global Surrogates

m Explanations through visualization (image highlights or activations in CNNs) difficult in
scenarios that are not inherently visual.

m Counterfactual explanations provide truthfulness to the model
e Are human interpretable by letting user explore what-if scenarios

o CF can be useful to:
m End-users
m mModel builders, fairness evaluators (debugging biases)
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Desired Properties of Counterfactuals

Actionability, validity

Diversity

o Should provide a set of examples as an example-based decision support system
o Generate any number of CF examples for an input

Proximity
Follow causal laws of human society
Support user-provided inputs

o Custom weights for features
o Constraints on perturbations
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Assumptions

ML model remains relatively static

Binary classification for differentiable models

CF does not have causal knowledge of features they modify

m Perturbing features independently can lead to infeasible examples

e EXx: Obtaining a higher degree without aging

Work based on formulation by Watcher et. al.

¢ = argmin yloss(f(c),y) + |x —c|, (1)

where the first part (yloss) pushes the counterfactual ¢ towards a
different prediction than the original instance, and the second part
keeps the counterfactual close to the original instance.
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Terminology

ML model (f)
Original input (x)

Original outcome

Original outcome class
Counterfactual exam-

ple (¢;)

CF class

The trained model obtained from the training data.
The feature vector associated with an instance
of interest that receives an unfavorable decision
from the ML model.

The prediction of the original input from the
trained model, usually corresponding to the unde-
sired class.

The undesired class.

An instance (and its feature vector) close to the

original input that would have received a favor-
able decision from the ML model.

The desired class.

Table 1: Terminology used throughout the paper.
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Diversity and Feasibility

dpp_diversity = det(K), (2)

1
1+dist(cj,cj)

between the two counterfactual examples.

whereK; ;j = and dist(c;, ¢ j) denotes a distance metric

k
1
Proximity := —T Z dist(cj, x).
i=1

o Sparsity handled after the CF generation

o User constraints:
m Feasible ranges for each feature
m Variables that cannot be changed
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Optimization

_—

k k
1 A1
: 1 —— l — , —_— d’ t ‘,
C(x) gfgm;r: . ;:l,yosso‘(c,) y) + . ,-E=1’ ist(ci, x)

— Ap dpp_diversity(cy, ..., Cx) (4)

o Combined loss function
m Non-convex (can't always achieve f(c) = y)

o Optimized with gradient descent
m 5000 steps max.
m C_linitialized randomly
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Implementation

YLoss

hinge_yloss = max(0,1 — z * logit(f(c))),

where z is -1 when y = 0 and 1 when y = 1, and logit(f(c)) is the
unscaled output from the ML model (e.g., final logits that enter a
softmax layer for making predictions in a neural network).

Distance Functions

l dCOﬂt |cp - xpl 1 dcat
dist_cont(c, x) = Z i dist_cat(c, x) = Z I(c? # xP),
dcont p=1 MADP dcat p=l
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Evaluation
unique instances in C s.t. f(c) > 0.5
Validity %Valid-CFs = g P 1) /|
k
; - 1 .
Continuous-Proximity : ~ 7 Z dist_cont(ci,x), (7)
—
Proximity l k
1
Categorical-Proximity: 1 — v Z dist_cat(cj, x), (8)
i=1
e ¢ Kk
parsity ——
Sparsity: 1 — E Z Z l[c#x”
i=1]=1
1 k-1 k
Diversity Diversity: A = 2] Z Z dist(c;, ¢;),
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Results
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Interactive Tools

Datapoint Editor

o Visualization and interactive tools have been increasingly used to support understanding,
debugging, verification, and refinement of ML models.

Performance & Fairness

Features

500 datapoints loaded * @

Visualize

@® Datapoints

J Show nearest counterfactual datapoint @ L1

QO Partial dependence plots

Show similarity to selected datapoint (i)

Edit | Datapoint 165

<« >opw ==
Feature name

age

capital-gain

capital-loss

education

education-num
hours-per-week
marital-status
native-country

necunatinn

Infer | Datapoint 165

Run inference

Run Label
1 0 (<=50k)
1 1 (>50k)

Q_ search features

Score
0.547
0.455

Value(s)
31
0
0
Some-college
10
40
Married-civ-spouse

United-States

Delta

O @®

A

Binning | X-Axis

(none)

Binning | Y-Axis Color By

Inferenc... ~

Label By
(default) ~

Scatter | X-Axis

v (none) v (default) ~

Scatter | Y-Axis
Inference « ~

0.994

WP wo, gwe0,

©
o“.‘ :.';:

Legend

Colors

,0.000502

® >50k

by Inference label

® <=50k

<

output value

Q Feature Sidebar

Selecting OverallQual adds
its shape curve to GAMUT.

Sort by
Absolute Difference

SHOW ALL CLOSE ALL
LotArea
GrLivArea ®
Fir =
Overall material and finish quality
OverallQual 1
BsmtFinSFOne %
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sample order by similarity
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@ Shape Curve

Brushing Instance 550 and
Instance 798 shows their
prediction contributions.

o OverallQual 1l ®
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40k
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@

'20k ‘:—/

Instance 550's OverallQual = 8
adds 7 ’ but

Instance 798's Overall Qual = 6
subtracts -$14,340.

A
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20k
0
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205
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e Instance Explanation

These houses are predicted similarly,
but for different reasons!

OverallQual: 8
Contribution: +22,295

Intercept
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Interactive Tools

o Visualizations of feature importance

o Google What-If Tool

o Gamut: A Design Probe to Understand How Data Scientists Understand Machine Learning
Models

o Many others
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Interactive Tools

n FBLearner Workflow Library Projects Tools» Help »

ActiVis: Visualization of Deep Neural Networks #15782570
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Interactive Tools

®

v Model Info:

type: rule-explainer

#rules: 53

nodel wine_quality_

40-40-40-40

» Dataset: wine quality red

o I

sample test

» Styles
Flow Width
Rect Width:

Roct Hoight:

Color Scheme:  Seq [

s/ Settings

Conditional:

Detail Qutput:

Rule Filters

Min Evidence:
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Yao Ming, Huamin Qu, Member, IEEE, and Enrico Bertini, Member, IEEE

Collapse All

Data Filter
P Predict

alcohol

Filter

Input
sulphates
Filter

Input

gensity

Filter

Input

total suitur diex'ce
Filter

Input

fixed acidity
Filter

Input

volatile 2ciaity
Filter

Input

free sulfur diaxide

<« LS00 J.9o0o00

Oscar Gomez | Quantil | New York University



What-If

Datapoint editor Performance & Fasness Featu

Visualize
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I Show nearest counterfactual datapoint ® L O Lz

Show similanty to

selected datapoant

Edit - Datapoint 288

< > 4 @ .
Feature

age

capetal-gan
capstal-loss
education
education-num
hours-per-week

marital status

Value(s)
O
0
0
Some-college
10
A0

Mamed-Crv-spouse

natve-country United States
occupation Transport-moving
over S0k 0
race Black
relationship Husband
sex Male
workclass Federal gov
infer - Datapoint 288
Run nference

Mur ) vl baed
| 1 1 (»50%)
] 1 D (e*50K)
1 2 D («=50%)

2 1 (>50K)

Interpretable Machine Learning: Methods and Challenges

0518
0am
Co6e
03T

Bnrng | Y-Axe

(none

<

0903

DO166

"]’f{’m' lang 1

https://pair-code.qgithub.io/what-if-tool/

abe |
(default)

amer X

Inference score 1 ~

Oscar Gomez | Quantil | New York University

500 detapoints lnadec Q @

atte

Inference score 2 ~

Legend
Colors

® =50k
® >50%
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FICO xML Challenge

Global Model

R

T

Origimal Festures

Subscale Featares

Sy
v

Output

Sabwcale Contriescn

Lorw Rk

(%o Detiaslty
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High Rk
(Detasit)

Output
Subscales Risk ScoreWeightsPoints
ExternalRiskEstimate 0819 1593 1305
TradeOpenTime 0789 2468 1947
NumSatisfactoryTrades 0.742 2273 1.686
TradeFrequency 0606 0358 0217
Delinquency 0799 2470 1973
Installment 0657 1.175 0972
Inquiry 0579 2994 1.733
RevolvingBalance 0.641 1.877 1203
Utilization 0442 1.119 0495
TradeWBalance 0.731 0214 0.157
Overall Score AL488
Bias -8.495
Associated Risk

952%

Activation Function

Risk Score
= Y=-T-T-T-T-T-T-T-T-F
O=“NLHMINDONDODO

xxxxxxx
3 2 1.0 1__
Overall Score+Bias

https://community.fico.com/s/blog-post/a5Q2E0000001czyUAA/fico1670

T 1
2 3 4 5

Participants were challenged to create machine learning models with both high accuracy
and explainability using a real-world dataset provided by FICO.
Empirical evaluation method that considered how useful explanations are for a data
scientist with the domain knowledge in the absence of model prediction.

Consistent Rule-based Explanations

The system solves an optimization problem (using Gurobi(c)) to compute the smallest set of

rules that guarantees identical prediction by our global model.

For all 594 people whose:
o ExternalRiskEstimate is 63 or less
and
o AverageMInFile is 48 or less

all of them were predicted to default.
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FICO xML Challenge
Approach

Client focused solution

o Useful feedback to clients

o Reasons for decision

o Suggestions for improvement / warnings

Visual Interface
o Aggregation / exploration of individual explanations

o Customizable screen

Dataset

o Cleaned version of the FICO dataset. 10459 data points, 23 predictor features and 1 target
feature.

o Anonymized Home Equity Line of Credit applications.

o Target is Risk Performance, indicates if the customer paid the credit as established.

o Given with monotonicity constraints and special values.

Interpretable Machine Learning: Methods and Challenges Oscar Gomez | Quantil | New York University



Features

ExternalRiskEstimate
MSinceOldestTradeOpen
MSinceMostRecentTradeOpen
AverageMInFile
NumSatisfactoryTrades
NumTrades60Ever2DerogPubRec
NumTradesS0Ever2DerogPubRec
PercentTradesNeverDelq
MSinceMostRecentDelq
MaxDelq2PublicRecLast12M
MaxDelqEver

NumTotalTrades
NumTradesOpeninLast12M
PercentinstallTrades
MSinceMostRecentingexcl7days
NumingLast6M
NumingLast6Mexcl7days
NetFractionRevolvingBurden
NetFractioninstallBurden
NumRevolvingTradesWBalance
NuminstallTradeswBalance
NumBank2NatlTradesWHighUtilization

PercentTradesWBalance

Legend

Categorical features

Features with -8 special value
Features with -7 and -8 special value
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Description

Consolidated version of risk markers
Months Since Oldest Trade Open
Months Since Most Recent Trade Open
Average Months in File

Number Satisfactory Trades

Number Trades 60+ Ever

Number Trades S0+ Ever

Percent Trades Never Delinquent
Months Since Most Recent Delinquency

Monotonically Decreasing
Monotonically Decreasing
Monotonically Decreasing
Monotonically Decreasing
Monotonically Decreasing
Monotonically Increasing

Monotonically Increasing

Monotonically Decreasing
Monotonically Decreasing

Max Delq/Public Records Last 12 Months. See tab "MaxDelq" for each (Values 0-7 are monotonically decreasing
Values 2-8 are monotonically decreasing

Max Delinquency Ever. See tab "MaxDelq" for each category
Number of Total Trades (total number of credit accounts)
Number of Trades Open in Last 12 Months

Percent Installment Trades

Months Since Most Recent Inq excl 7days Monotonically Decreasing
Number of Inq Last 6 Months Monotenically Increasing
Number of Inq Last 6 Months excl 7days. Excluding the last 7 days remo Monotonically Increasing
Net Fraction Revolving Burden. This is revolving balance divided by cred Monotonically Increasing
Net Fraction Installment Burden. This is installment balance divided by « Monotonically Increasing
Number Revolving Trades with Balance No constraint

Number Installment Trades with Balance No constraint

Number Bank/Natl Trades w high utilization ratio Monotonically Increasing
Percent Trades with Balance No constraint

No constraint
Monotonically Increasing
No constraint

Oscar Gomez | Quantil | New York University
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Machine Learning Model
Training & Pre-processing

Pre-processing Data
o Omit redundant data:
m Samples with all the fields with -9 value (not investigated or not found)
o Linear Regression:
m Samples with -9 values for External Risk Estimate
o k-NN Imputation:
m Samples with -8 values (no usable / valid accounts)
o Approximation:
m Samples with -7 values (condition not met)
o Standardization of categorical values

Model

o SVM (Linear Kernel)

o Test accuracy:
m ~68% before pre-processing
m ~74.8% after processing
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Algorithms
Data discretization & Explanations

Minimal Set of Changes

o Suggest the fewest changes to flip a decision.

o Greedy procedure that optimizes the change in the model's prediction at each step.

o Similar to Martens et. al (2014), explaining why a document was or was not classified as a
particular class.

Key Features

o Based on Anchors by Ribeiro et. al (2018)

o Systematically perturbing a sample instance and measuring the resistance to change
against a predetermined threshold.

o Highlighting the features that are of paramount importance for the model.

o Fixing one feature at a time and perturbing all the other columns by their respective
Gaussians

o To add a dimension to the visualization a density estimation was performed to highlight
the data distribution.

Data Discretization
o Distribute numerical features into ten bins.
o Range of two standard deviations below the mean to two above it.
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Individual Explanation
Client Overview

1. Classification correctness

2. Model's percentage
prediction

3. Buttons that allow
modifying the display

4. Highlights a key feature for
this decision

5. Shows the density
distribution

6. Minimum changes
needed to reverse the
decision

7. Text version of the
explanation

ID: 40 @o

The model prediction for this client is bad with a prediction score of 41.8%

Density Monotonicity Sort

178 64
 w— =
1 .._1 B 86
78 T — o 75
0 5
56
— — 3 3 3 3
= 11 "
— - —
21 [T e —p— e — 0
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¥ o
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Key Features 0 Suggested Changes
The key factors that have contributed to the model's negative decision: If the client manages to make the following improvements the model would predict a positive
- The client has only an average of 13 Months in File. decision:
- The client has a low number of Satisfactory Trades - This client needs to wait such that their Average Months in File increases to 56.
- The percentage of Installment Trades is an important feature for the model's decision - The client needs to wait 28 months such that a total of 178 Months have passed since Last
- The number of Revolving Trades with balance is 3 Deliquency.

http://oscargomezq.pythonanywhere.com/intro
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Global Explanation
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VICE: Visual Explanations for
Machine Learning Models

Oscar Gomez, Steffen Holter, Jun Yuan, Enrico Bertini
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Introduction

VIiCE
o A novel design for an explainable machine learning visual analytics tool.

o End-user: the client-facing person trying to better understand predictions made by the
model. This could include doctors inferring why a patient is predicted as high risk for
diabetes or admissions officers looking into why a particular candidate was rejected.
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Introduction

Counterfactuals
o New algorithm for calculating counterfactuals that is not limited to binary variables and is

intended for use with tabular numerical data.
o First visual interface that is able to display these explanations effectively and coherently.

o Supplemented with functionality that contextualizes the targeted sample with regards to
the rest of the dataset.

o |Interface does not only clarify the model's decision but can also be used to pinpoint bias
and undesired behaviour.

Usage
o Each explanation provides actionable suggestions that can help adjust the model's
prediction. For example, it could be used by a loan-officer looking to get a previously

rejected application approved.

Oscar Gomez | Quantil | New York University
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Goals

Overall
o Support understanding of individual predictions through counterfactual explanations and
to provide an intuitive visual representation for them.

o What is the minimal set of changes that is required to change the prediction?
. Which features need to change?
Il. Extent to which they have to change?

Questions
o QI: How do the values of the instance compare to those across the rest of the dataset?

o Q2: Which features have the most considerable effect on the model's prediction?
o Q3: Are there changes that could alter the model's current prediction?

o Q&4: Is it possible to change only a subset of actionable features to change the model's
prediction?
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Counterfactual Algorithm

Overall
o Find the minimal set of changes needed to change the model's output.

o Simple heuristic greedy search.

o Two constraints that ensure the explanation is interpretable and feasible.

Pre-processing

o Entire dataset is discretized by fitting a Gaussian on each of the features and splitting the

values into n bins such that the middle n-2 capture four standard deviations from the
mean, and the extremal bins capture data points beyond this.
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Counterfactual Algorithm

Iterations
o Greedily move feature values across the bins until the predicted class is changed, or until
the pre-defined constraints are reached.
m No more than w features are changed in a single explanation and no feature value is
moved across more than | bins.

1. Starts with the original feature values, given an arbitrary set of unlocked features which can
be acted upon.

2. Independently moves the value in each of the unlocked features to the bins above and
below the current one and chooses the one eliciting the largest change in the model's
output.

3. Take the maximum change across all the unlocked features and uses this as the input for
the next iteration.

Interpretable Machine Learning: Methods and Challenges Oscar Gomez | Quantil | New York University



Visual Interface

1. Predicted probability
2. Classification correctness

3. Frequency density
distribution and feature
values

4. Counterfactual
explanation

5. Locking functionality

6. Lock, sort, and distribution
toggles
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Implementation

o Flask web application with the back-end running on Python.
o Visualisations are created using D3 and JavaScript.
o Can accept any binary classification dataset in a CSV format.

o Default SVM model is trained with scikit-learn, however, the program also accommodates
custom input models as long as probability prediction methods are provided.

o Data is processed in real time to accommodate customized end-user inputs.

o Split feature values across n=10 bins and set w =1 = 5 for the algorithm constraints.
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Case Study
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Limitations

o Algorithm cannot effectively handle categorical features.
m Presetting a search path or performing a brute force analysis of features that are known
to be categorical.

o Generating counterfactuals does not currently extend to multi-class classification and only
works with binary target variables.
m Aim to accommodate multiple class datasets to improve the tool's versatility.

o Intended for tabular numerical data and is therefore not suitable for other contexts such as
image or text classification.

o Visualization can realistically display a maximum of around 30 features.
m Larger datasets can be accommodated by utilizing the sorting feature and only
displaying the top k features or those that are part of the counterfactual.
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Conclusions and Future Work

Future Work
o Introduce increased interactivity for the Ul.
m Adding an option to view the impact of custom changes inputted by the user.
m Integrate additional explanation methods will be integrated.
e Customizing the sorting functionality to order the features according to their local
IMmportance magnitudes

o Extending the tool to a global scale through the aggregation of instance explanations
could further increase its usefulness for model developers.
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Conclusions and Future Work

Conclusions

o VICE - a novel way for the end-user to gain insight into model predictions through
counterfactual explanations.

o For each sample the minimal set of changes needed to alter the decision was shown.

o Interacting with the interface allows customizing the explanation according to the user's
requirements.

o First in visualising counterfactuals for non-binary data.

o Modular black-box based nature of the tool allows for a seamless integration of continued
Improvements

m Including different methods to generate counterfactuals
m Providing users with a set of alternatives to the displayed counterfactual explanation.
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AdVIiCE: Aggregated Visual Counterfactual Explanations
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AdVIiCE: Aggregated Visual Counterfactual Explanations
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Challenges

Interpretable Machine Learning: Methods and Challenges

Fooling perturbation based explanations (H. Lakkaraju, 2020)

m Manipulating user trust, high degrees of freedom in methods like LIME

m Even methods with very high fidelity can be unstable and unreliable [Rudin 2019, Lipton
2017, Ghorbani 2019]

m Saliency maps vulherable to adversarial attacks
m Not necessarily causal and are counterfactual - need to be communicated to end user

Is the accuracy/interpretability tradeoff real? (C. Rudin, 2019)

m Rashomon Effect
m Define interpretability for specific domains
m Stop explaining in high stakes domains

Lack of evaluation at scale in real world scenarios (R. Ghani, 2020)
m Methods usually tested on standard, common datasets

Problems with “Mathiness” and “Language” (Z. Lipton, 2019)

m Weakness in arguments hidden in theorems, weakness in theorems hide in text
m Inflating simple technical concepts
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Challenges

Fooling perturbation based methods
o Can effectively mask the discriminatory biases of any black box classifier

o Exploit that perturbed samples are OOD (out of distribution)
m Build a classifier that is biased on in-sample data points and unbiased on OOD

f(x), ifx € Xyjist

B = Y(x), otherwise

LIME

Bl African-American BN Uncorrelated Feature 1 BN Uncorrelated Feature 2 Others

5
a

% Occurence

3rd

https://interpretable-ml-class.github.io/
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Challenges

Fooling perturbation based methods
o Experts are 9.8 times more likely to trust the black box if they see an “agreeable”

explanation

Fraction of participants who trust

Interpretable Machine Learning: Methods and Challenges
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Resources

Toolkit Data Directly Local Global | Persona-Specific | Metrics
Explanations | Interpretable | Post-Hoc | Post-Hoc Explanations
AIX360 v v v v v v
Alibi [1] v
Skater [7] v v v
H20 [4] v v v
InterpretML [6] v v v
EthicalML-XAI [3] v
DALEX [2] v v
tf-explain [8] v v
iNNvestigate [5] v

Table 1: Comparison of Al explainability toolkits.

https://arxiv.org/pdf/1909.03012.pdf
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Resources

INnterpretable Machine Learning Book

Interpretability and Explainability in Machine Learning

Fairness and machine learning Limitations and Opportunities

Repository of machine learning interpretability resources

Al Explainability 360

VISxXAl Workshop

h2oai/mli-resources

Many, many others...
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