N O~

A Review on Machine Learning in Neutrino Experiments

Karl Warburton — lowa State University

Quantil Seminar
| 2th November 2020

hitps://arxiv.org/abs/2008.01242



https://arxiv.org/abs/2008.01242

Who am I?

From Stoke-on-Trent in the UK.

| use Machine Learning to improve studies | perform looking for
neutrino oscillations, a key driver of particle physics research.
Did my undergraduate and PhD at the University of Sheffield, UK.

Worked on simulations and reconstruction techniques in a prototype

detector for the next generation of neutrino experiments (DUNE).

Currently working at lowa State University, USA and based at Fermilab,
in lllinois, USA.

Working on supernova triggering in DUNE.Will speak about how Machine

Learning may be a better method of doing this later on in the seminar.

Lead the Reconstruction and Deep Learning on NOvVA, which had the first

physics result using a Machine Learning algorithm.

-
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A Brief Outline

What are neutrinos? What do we try to do in Neutrino Experiments!?

A brief introduction to Machine Learning.

The challenges of applying Machine Learning in neutrino experiments.

The future opportunities presented by Machine Learning techniques.
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A crash course in Particle Physics

An atom has a nucleus (made of protons and neutrons)

orbited by electrons.
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A crash course in Particle Physics

0 @0
@

Protons: 2 up and | down quarks.

181

Neutrons: | up and 2 down quarks.

Electrons are fundamental and stable.

electron

l/ e Neutrinos are counterparts to electrons, but

neutrino are rarely discussed despite being extremely

electron

numerous and having played an important
An atom has a nucleus (made of protons and neutrons)
role in the evolution of the Universe.
orbited by electrons.

A Review on Machine Learning for Neutrino Experiments Karl Warburton Iowa State University 12/11/2020



A crash course in Particle Physics O

rd
3 The Standard Model of Particle Physics.

H

Higgs Boson

Various hints that it isn’t complete;

Doesn’t explain dark matter,

beauty Doesn’t explain dark energy,

Doesn’t the matter/anti-matter asymmetry

in the Universe,

Z boson

electron

Ve

Doesn’t explain “Grand Unified Theories™

such as Super Symmetry,

neutrino
tau

neutrino neutrino
electron muon

Struggles to explain the properties of neutrinos

which we observe...
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A crash course in Particle Physics — Neutrinos (%)

Neutrinos are really light.

neutrinos de se@ pe
— This “mass-gap” cannot currently be
| ; [+ C® 1@ explained without some pretty
, extreme modifications to the
e ® H' Te Standard Model.

Ll IIIHI‘ | L1 ‘ l II‘ LI L L \‘ | L1 l‘ | IIII‘ LI

< O —] They are also the only fundamental

<  particle with no electric charge.
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A crash course in Particle Physics — Neutrinos O

Neutrinos are really light.

neutrinos dre se pe
— This “mass-gap” cannot currently be
| , [+ C® 1@ explained without some pretty
{ extreme modifications to the
e ® H@ Te Standard Model.
‘ l |||H’ L 11 HI’ | |] ‘ | 1] l‘ | L11] L HI‘ | 1] ‘ | 1] I‘ L1 LU L ‘ | 1] \‘ | [ II‘ LI
D = g —] © They are also the only fundamental
< D &9 D . . .
< . <  particle with no electric charge.

Neutrinos are the most numerous matter particle in the

10,000,000,000,000
NEUTRINOS

Universe and are produced by pretty much everything.

THIS
SQUARE
EACH

SECOND

Neutrinos interact much less than any other particle.

This makes them very hard to study.
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A crash course in Particle Physics — Neutrinos

Neutrinos don’t exist as discrete flavour states, but instead as a

2
1

combination of the three flavour states, called v{, v,, v3 which each

have a different mass.

We have handles on the differences of these masses, but do not

know the exact structure of them.
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A crash course in Particle Physics — Neutrinos

20V VE‘A_ SR

. ’ . . . m A
Neutrinos don’t exist as discrete flavour states, but instead as a =
R
combination of the three flavour states, called v{, v,, v3 which each t Ams3,
have a different mass. Am?, !
- D v v
We have handles on the differences of these masses, but do not ! $ Am?,
v
know the exact structure of them. 3 = - ]_ Ve V“.
- yCa YZrTNd{
: cdt d U
Al s 3 > >
ll\:}lo Te
g W e
o l [><c - It is possible that the nature of neutrino masses are
% 107'E KamLAND-Zen (**Xe) 43 l
~ [ O different to that of all other particles.
\E/ i x Vt,zve
1072F 3 The observation of a forbidden process in the SM
| NH W ™ would shows that this is true, as well as possibly
10~F 3 . .
.. IR TR resolving the order of the neutrino masses.
10" 10° 107 107 50 100 150 ; ;
mlightcst (CV) A

A Review on Machine Learning for Neutrino Experiments Karl Warburton Iowa State University 12/11/2020



A crash course in Particle Physics = Neutrino Oscillations (i)

Va Va Va
Vg V,B Vg Vg
Va Va Va Va Va
Va Va Va Va
Va Va Va

Imagine a cluster of neutrinos.

It is initially very pure, with almost all being

of flavour v,, though there is a small

contamination of Vg.
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A crash course in Particle Physics — Neutrino Oscillations (1)

Vg Vg Vg Vp Vg Vg
Vg Vg Vo Vg Vg Vg Vg Vg
Vg Vg Vg Vg Vg ==========> Vy Vg Vo Vg Vg
Vg Vg Vg Vg Ll Vﬁ Vg Vﬁ Vg
Vg Vg Vg Vp Vg Vg

Am? =0.003eV?,  sin®20 = 0.8, E, =1GeV

The neutrinos travel a distance L{, over a =T r T
time T. 0.8 I—
0.6 |— o,
P sin“ 26
04+
Many of the initially v, neutrinos will os |
behave as a different flavour v. i 1 ¥

0 100 200 300 400
L/km

A Review on Machine Learning for Neutrino Experiments Karl Warburton Iowa State University 12/11/2020



A crash course in Particle Physics — Neutrino Oscillations (1)

Va Va Va
Va VB Va Va
L,
Va Va Va Va
Va Va Va

A distance L, later most of the vg

neutrinos will have oscillated back to v,,.

The values of the oscillation parameters

affect the rate of oscillations, as does the

Vg Vg Vg Va Va Vg
Vﬁ Vﬁ Vg Vﬁ Vg Vg Vg Vg
Vo Vg Vg Vg Vg == mmmmm—m—— ), Vg Vi Vg Vg -----Z----* Vo Vg Vg Vg Vg
Vﬁ Vg Vﬁ Vg 2 Vg Vg Vg Vg
V,B V,B V,B Vg Vg Vg
Am? =0.003eV?,  sin®20 = 0.8, E, =1GeV
1 — S
0.8 |— P(V":iv“) Ly L, _
wl 7 >
0.4 P(Ve = Ve) -
0.2 — alll
00 | 160 - 2(;0 | 3(1)0 - 4(1:0 B 5(;0 l 660 l 760 B 800 ‘9(;0‘1 li000

presence of a 3™ neutrino mass state.
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How we Build Neutrino Experiments - LOTS of Different Ways @
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What we aim to do in Neutrino Experiments - Energies (1)

NOVA, neutrino oscillation KATRIN, neutrino mass measurements
I g 1of 9] |k Looking for this
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-l : . ; 5 04
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O e 140, n
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What we aim to do in Neutrino Experiments - Topologies

NOVA, neutrino oscillation

ICE-Cube, oscillations and high energy n
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A Brief Introduction to Machine Learning

Algorithms whose performance for a given

task improves with experience

O o
@)
‘ o o O
v O 0
O
Artificial Neural Network Dimensional Reduction Clustering Algorithms Decision Tree Regression Algorithms Deep Learning
Algorithms Algorithms Algorithms Algorithms
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The Structure of Artificial Neural Networks (ANNs/DNNs) O

: S L0 Wo
Simplest way to visualise a neural network. *@ synapse
axon from a neuron
Wox(

A large collection of interconnected neurons which each

cell body

¥ (Z wW;T; + b)
Zwia:i +b l

P
output axon

activation
function

Take in 2 number of individually weighted inputs W11

f

Employ mathematical functions, activation weights, to calculate an output

weight which is passed to future neurons. Wo Lo

Neurons are connected in layers allowing

the network to learn about the inputs.

Arbitrary number of hidden layers.

O output
hidden
layers

Neurons are ultimately connected to form an
output score which the network is trained to

achieve.
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The Structure of Artificial Neural Networks (ANNs/DNNs) O

The inputs to the network are often
extracted using traditional reconstruction

methods.

Note, that they do not necessarily learn why

certain inputs are correlated, just that they are.

Physics examples are things like decay kinematics.
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The First Use of ANNs in Neutrino Physics

Classified events using hit patterns.

Scenario 1 Network Output
E Network

400 |

450

It did not achieve better separation Assignment

35 -

than traditional methods. g

- | | CC/ES NC/ND
2% T
'F |
200 f— True CC/ES | 3809 1191
It showed that it was possible to do 0 | ~ (lass
,: | _
though, and lay the groundwork for {L NC/ND | 1295 3705

these techniques to be explored.

Overall Purity = (75.1 £ 0.4)%

P Y—

The SNO Experiments first use of a DNN in the 1990s.

Modern analyses feature NNs across

a wide range of applications.
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Convolutional

Neural Nets (CNNs)

i O L . .
I— o e ©
e .. . : : - r v &= TV,
............... - Fullg
| | onnecte
Convolution Pooling Layer Convolution Pooling
Input Layer Layer g Lay Layer Layer Layer

Feature Extraction

Premise: Allow the network to extract features rather In Practice: Cast detector signals into maps and use CNNs

selecting them a-priori. to classify interactions in the style of image recognition.

Removes any biases which may be introduced from Use image kernels to do this from 2D arrays.

the traditional reconstruction algorithms. Traditionally use an image-to-RGB tensor strategy.
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Convolutional Neural Nets (CNNs)

ul ------..................“ A
l' ..,D [ ==
. SEMLTRLL D :
l.'.':. ) _.‘
L e ;-o--c--‘-‘-‘.'—l:p-.n
................ )
Input Layer Convolution Pooling Layer Convolution Pooling Conn:g;eg

| Layer Layer Layer

Feature Extraction

The convolution layers use image

kernels for feature extraction.
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Convolutional Neural Nets (CNNs)

[E- .............. .
AL
s O [ , ©
.l :D 1 - . .
i evagignl. " I TR | . .
l'..':: - _
- .;.--"""ﬁ:n .
...................... Fully
Convolution Pooling Layer Convolution Pooling c""",‘_’g;f.’:,'

Input Layer | Layer Layer Layer

Feature Extraction

The convolution layers use image

kernels for feature extraction.

W | O

The pooling layers down-sample

NI N O
—
O] | &
OV
-

the image, reducing computational 1

cost and emphasizing features.
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Why is Machine Learning Becoming Popular Now?

12 - v

[
(=2} ==} (=
4‘

4

Top-1 accuracy density [%/M-Params]

A huge growth in computing power over the last decade.

Particularly GPU technology.

At the same time, networks are becoming much more

accurate, whilst requiring fewer computing resources.
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Inception-v4

80 4 :
Inception-v3 ‘ ResNet-152

ResNet-50 ‘ : VGG-16 VGG-19
75 ResNet-101

’ ResNet-34

70 4 ResNet-18
00’

ENet

0 BN-NIN

60 - 5M 35M 65M 95M 125M  155M

55‘

50

GooglLeNet

65 -

Top-1 accuracy [%]

BN-AlexNet
AlexNet

0 5 10 15 20 25 30 35 40
Operations [G-Ops]

Modern experiments produce enormous datasets.

Some future experiments are ~30 PB per year!

Applications from industry are applicable to many

physics problem sets.
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Challenges involved in applying Machi
Neutrino Experiments

#1: The Adaptability of methods.




GooglLeNet and The First Applications of CNNs

Developed for the 2014 ImageNet Challenge (ILSVRC 2014).

The first creatively non-sequential implementation of convolutional

layers in CNNSs.

Had significantly higher accuracy and performance improvements

compared to its competitors.

Neutrino experiments attempted to use it with few modifications.
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Going Deeper with Convolutions

Christian Szegedy', Wei Liu?, Yangqing Jia!, Pierre Sermanet’, Scott Reed?,

Dragomir Anguelov', Dumitru Erhan', Vincent Vanhoucke', Andrew Rabinovich?
1Google Inc. ?University of North Carolina, Chapel Hill
3University of Michigan, Ann Arbor *Magic Leap Inc.

1{szegedy,jiayq,sermanet,dragomir,dumitru,vanhoucke}@google.com
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Abstract

We propose a deep convolutional neural network ar-
chitecture codenamed Inception that achieves the new
state of the art for classification and detection in the Im-
ageNet Large-Scale Visual Recognition Challenge 2014
(ILSVRCI14). The main hallmark of this architecture is the
improved utilization of the computing resources inside the
network. By a carefully crafted design, we increased the
depth and width of the network while keeping the compu-
tational budget constant. To optimize quality, the architec-
tural decisions were based on the Hebbian principle and
the intuition of multi-scale processing. One particular in-
carnation used in our submission for ILSVRC14 is called
GoogLeNet, a 22 layers deep network, the quality of which
is assessed in the context of classification and detection.

1. Introduction

In the last three years, our object classification and de-
tection capabilities have dramatically improved due to ad-
vances in deep learning and convolutional networks [10].
One encouraging news is that most of this progress is not
just the result of more powerful hardware, larger datasets
and bigger models, but mainly a consequence of new ideas,
algorithms and improved network architectures. No new
data sources were used, for example, by the top entries
in the ILSVRC 2014 competition besides the classification
dataset of the same competition for detection purposes. Our
GoogLeNet submission to ILSVRC 2014 actually uses 12
times fewer parameters than the winning architecture of
Krizhevsky et al [9] from two years ago, while being sig-
nificantly more accurate. On the object detection front, the
biggest gains have not come from naive application of big-

Iowa State University

ger and bigger deep networks, but from the synergy of deep
architectures and classical computer vision, like the R-CNN
algorithm by Girshick et al [6].

Another notable factor is that with the ongoing traction
of mobile and embedded computing, the efficiency of our
algorithms — especially their power and memory use — gains
importance. It is noteworthy that the considerations leading
to the design of the deep architecture presented in this paper
included this factor rather than having a sheer fixation on
accuracy numbers. For most of the experiments, the models
were designed to keep a computational budget of 1.5 billion
multiply-adds at inference time, so that the they do not end
up to be a purely academic curiosity, but could be put to real
world use, even on large datasets, at a reasonable cost.

In this paper, we will focus on an efficient deep neural
network architecture for computer vision, codenamed In-
ception, which derives its name from the Network in net-
work paper by Lin et al [12] in conjunction with the famous
“we need to go deeper” internet meme [1]. In our case, the
word “deep” is used in two different meanings: first of all,
in the sense that we introduce a new level of organization
in the form of the “Inception module” and also in the more
direct sense of increased network depth. In general, one can
view the Inception model as a logical culmination of [12]
while taking inspiration and guidance from the theoretical
work by Arora et al [2]. The benefits of the architecture are
experimentally verified on the ILSVRC 2014 classification
and detection challenges, where it significantly outperforms
the current state of the art.

2. Related Work

Starting with LeNet-5 [10], convolutional neural net-
works (CNN) have typically had a standard structure —
stacked convolutional layers (optionally followed by con-
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GooglLeNet and The First Applications of CNNs - NEXT
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Pixel maps used by the NEXT experiment.

Top, a coarse voxelation (10 mm voxels) where structure at the end of the track is lost.

Bottom, a fine voxelation (2 mm voxels) where this structure is still visible.
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A network designed to perform background

rejection for neutrinoless double beta decay.

Equal numbers of signal and background events

are used in training.

2D projections of the detector readout
(XY,YZ, XZ) are used as the RGB input for

the network.

Outperforms traditional reconstruction by

between 20% and 60%.

Iowa State University 12/11/2020



GooglLeNet and The First Applications of CNNs - NOvVA

= DATA
Network designed to perform interaction classification. Ui
Subsequently extended to perform the identification of individual particles. —
The detector has two decoupled views, meaning that they cannot be E E == POOLING
combined into a single RGB tensor.
Therefore employs a Siamese architecture, with an input for each view.
— —
= INCEPTION OUTPUT
]
When first used in 2017, it increased effective exposure by 30%. J—
(.
Was the first CNN to be used in a published particle physics result. — FULLY CONNECTED

v Efficiency Improvement
Training Sample (ID > 0.9)

Found that training sign-dependant networks increased effectiveness. | 7. CC Signal v, CC Signal ©» NC Signal
14% 6% 10%
Karl Warburton Iowa State University 12/11/2020
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Spherical CNNs - Kamland-Zen

* Kamland-Zen is a near-spherical detector.

Extracted feature

in Euler Angle * Translating that into a 2D space, can cause distortions.

SO(3)

Convolution * As such, the use of spherical CNNs is required.

* The kernel covers the whole phase-space by scanning

Euler angles, avoiding such distortions.

* A Spherical network achieves better background than

their original network (71% vs 61%).
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IceCube Lab

° \ IceTo .
Graphical Neural Nets - IceCube san— = R e (D)

320 optical sensors

2010: 79 strings in operation
2011: Project completion, 86 strings

lceCube is a very non-uniform detector which takes data that is very
IceCube Arra

/86 strings includlyng 6 DeepCore strings
60 optical sensors on each string
Sparse. 5160 optical sensors
1450m | P
" [ — AMANDA

DeepCore

It IS therefo re not Wel I Su Ited to C N N S. | /6 strings-spacing optimized for lower energies

360 optical sensors

' |Eiffel Tower
& |324m

2450 m
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i

GNNs are designed to classify graphs, where the nodes define an

element of the detector, and the edges show connections between

elements.

|deally places to mitigate the difficult aspects of data of lceCube.
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Developed a GNN to separate neutrino and cosmic induced events;
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|dentifies 630% more signal events than a CNN/traditional algorithm with a
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Signal-to-Noise ratio which is 3 times larger.
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Challenge #2: Quantifying Network Bias and Uncertainties ©

Humans know features which

animals do and don’t have.

We need to make sure that our

algorithms do too.
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The Dangers... ©

https://arxiv.org/pdfl | 807.04975.pdf

Model bias is a problem for all Machine Learning.

As the extracted features are abstract, CNNs are particularly

susceptible to underlying model bias though.

: SR - Models are trained using simulated data;

Assumptions are made in generating such data on both the

model and the detector performance.

(A) Cow: 0.99, Pasture: (B) No Person: 0.99, Water:
0.99, Grass: 0.99, No Person: 0.98, Beach: 0.97, Outdoors: Assumptions are made in selecting training dataset.
0.98, Mammal: 0.98 0.97, Seashore: 0.97

Simulation will never fully reproduce real data.
The composition of training samples can constrain

network performance by containing in-built model

assumptions which may bias the results. Though this is a well known problem, no standard and

complete techniques exist to address it.
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Carefully Constructed Training Datasets - EX0O-200.

107 5
A network designed to perform charge-only energy
reconstruction which was initially trained on a specific P N A N «
Z
calibration source — 22Th. F
3
3
(a1 :
1073 E e WL ORI N | U ]
—  True
- 228 .
A systematic study found an unusually large DNN - (*""Th training)
— DNN (Uniform training)
improvement in the E, for events in the 2%T| peak. 3 107 i i — j
g 100 ......... vvvvv
~ X :
L0 -
Training on calibration data using a gamma-ray source £ —100] o .
~ SR RN .
located in the centre of the detector removed this Z 1000 1500 2000 2500 3000
= True Energy [keV]
unusually large improvement. : :
Y 1arg P An unusually large improvement in the
Studies repeated using a range of calibration sources at Energy Resolution is seen in the green line,
various locations yielded consistent results. which is not present in the Uniform Training.
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Domain Adversarial Neural Networks - MINERVA
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forwardprop  backprop (and produced derivatives)

It is difficult to correct for, or quantify unknown biases.

It is possible to minimize their impacts though.

The DANN used in MINERVA is a prime example.

A main network perform classification, whilst a second sub-

network is incorporated for bias reduction.
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label predlctor Gy(-;0 )

domain classnﬁer Ga(;04)
f \

f‘> f‘> ) domain label d
)\%
004

The domain sub-network incorporates real data into

the training to identify simulation/data differences.

The gradient reversal layer discourages the
classification network from learning any of the

differences between the domains.
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Quantifying Bias in Simulation vs Data - NOvVA

1.2

- V), CC {1t => MuonRemoved It => Flectron Added -

100

y

y (cm)

NOVA - FNAL E929

Run: 11321/3
Event: 590891 / --

UTC Sun Dec 6, 2015
22:55:22.249371632

-100
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z (cm)

1000 600 800

z (cm)

600 800

Select a Muon Neutrino interaction

from Data/Monte Carlo. with the muon. energy as the removed muon.

A process of Data Augmentation, known as Muon Removed, Electron Added seeks to quantify bia

Good agreement is found between comparisons of augmented data and simulation.

v-beam
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_l I I I I | I I |
- Detector Response systs
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I |§| “l/IRIE IDa.Ital | I I:
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| |
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Remove the hits associated Simulate an electron with the same =

s in NOVA.

1 2 3
v, Energy (GeV)

A second process aims to further quantify bias, by studying muons from cosmic rays which decay in the detectors.
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Human Labelled Datasets — MicroBooNE

Impossible to know the true identity of real data,

though humans can often correctly identify it.

Interestingly, when given identical datasets there will

be differences between human and NNs.

Suggests unknown biases between humans to NNis.

A Review on Machine Learning for Neutrino Experiments

MicroBooNE created a human-labelled dataset to

validate a semantic-segmentation network.

Trained on simulated events, with 5+ particles originating

from a common vertex.

Humans and the NN disagreement: ~2% of particles.
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Bayesian Neural Networks (7

Replace fixed value weights with

probability distribution functions.

0
d
ﬁga

The output is thus a probabilistic

function which can be interpreted as

8
\

most probable value.

O
ol
i
R

Thus able to convey a scale of

\4
)
J

)
(0/9

uncertainty related to predictions
which are outside of the scale of the

training dataset.
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Challenge #3: Network Interpretability

THIS 1S YOUR MACHINE LEARNING SYSTETM?

[ YUPL YoU POUR THE. DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLIERS ON THE OTHER SIDE.

WHAT IF THE ANSWERS ARE WRONG? )

JUST STIR THE PILE DNTIL
THEY START LOOKING RIGHT.

A Review on Machine Learning for Neutrino Experiments

Deeper networks are more difficult to interpret.

The exact behaviour of individual kernels and how they combine

to form the weights of a CNN is almost impossible to deduce.

This is much easier to do with boosted-decision-trees.

Particularly troublesome for physicists who want to relate

network features to underlying physics phenomena.
Knowing this could minimize or correct network inefficiencies.

Could also hint at specific features which are important to train

against.
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t-Distributed Stochastic Neighbour Embedding

150

) . . == |BD prompt

Widely used technique to interpret features, and -+« IBD delay
°°e MUON

» flasher

establish a proxy for classification separation. Lool
° o other

Network features are transformed down to 2D. >0

Uses a non-linear transformation to do this.

Preserves separation between points, but with lower

dimensionality.

—50}

A t-SNE from the Daya Bay Experiment to

—100}

separate anti-neutrinos from nearby reactors with

experimental backgrounds.

_150 ] ] ] ] ]
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Principal Component Analysis (PCA) and Salience Maps

PCA produces vectors along dimensions of maximal variation in the data

Vectors are orthogonal, and often performed on input data to reduce the

number of inputs required.

Can also be performed on extracted features to reduce dimensionality for

visualisation, similar to a t-SNE.

Also possible to identify which features are important to CNN:Ss.
Occlusion tests obstruct regions of an input image to find important features.
Salience maps show what features the network uses to make determinations.

Salience maps sometimes show that the network uses contextual information

to make it’s determinations.
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Challenge #4: Computational & System Constraints

ML in neutrino experiments uses huge resources;
Neutrino experiments record billions of events a year.
Neural nets perform >107 floating point operations.

Widespread use of large-spread computing clusters such

as the Open Science Grid to perform evaluation on CPUEs.

A Review on Machine Learning for Neutrino Experiments

The OSG partners with Europe for global science

Small-scale GPU clusters often used for training.

Large-scale GPU required for evaluation.

Currently no GPU computing clusters similar to the CPU

OSG exists.
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Improving Efficiency of Computing Resources O

Multi-task networks can reduce overall computational load.

Networks that identify neutrino flavour, can also be trained to

identify neutrino sign, type of interaction and final state particles.

Smaller networks often use fewer resources, but at the cost

of reduced performance for high complexity applications.

It is also possible to reduce the number of operations;

The structure of LArTPC data means that many CNNs multiply

or sum together zeros.

Liquid Argon Time Projection Chambers (LArTPCs)

Using submanifold sparse CNNs can reduce inference times by a

loball , but locally d .
are globally sparse, but focally dense factor of 30,and the memory cost by a factor of 300.
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Challenge #5: Dataset Availability

Open datasets are commonplace in data science applications.

However, they are still not widely used in particle physics. This is constrained by strict data-sharing restrictions.

Efforts are underway to change this, such as the

TrackML challenge by LHC experiments.
=11

10,000 tracks from the
TrackML challenge.

Open datasets would allow multidisciplinary
research and would likely result in improve the

quality and physics reach of algorithms.

This would require revisions to both authorship and

data-sharing policies of experiments.






Applications to Control and Manage Data Rates (s )

SN mteractlon + _
tradlologlcal background

DUNE will search for rare, low energy

Channel

interactions which are dominated by
the constant backgrounds from

electronics and radioactivity.

“ 800 I Aﬂ 600 e

Time Time

FPGAs in future detectors offer the chance to manage the huge data rates of future experiments using CNNis.

Will require online data processing of terabits per second continuously for more than 20 years.

The use of Machine Learning in triggers offer the chance to expand the physics reach of experiments.

Already seen in LHC experiments, and may reduce energy thresholds in LArTPC experiments by an order of magnitude.
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How Neutrino Physics Can Contribute to Machine Learning O

Quantitative results and careful statistical analyses. ' |
o0

Consideration of systematic effects and bias is crucial to particle physics.

As ML becomes more widespread in physics, there will be increased efforts

in understand this.

Key overlaps with ethical, and security concerns in wider ML applications.

Use of simulated datasets corresponding to real data.
Unlike most industry applications, particle physics trains on simulations.

These simulations can be tuned at will, making it possible to study

networks behaviour under controlled modifications.

Comparing data and simulations can improve studies in domain transfer.
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Physics Studies That Can Benefit Wider ML Applications

Particle Only

NOVA - FNAL E929
Far Detector Data

Run: 10713/4 UTC Tue Jan 27, 2015
Event: 500244 / -- 05:48:26.091133824

NOVA found that adding contextual information to a

particle identification network improved performance.

Has four Siamese towers, two for particle-only cluster, and

two with the full event for contextual information.

Improves performance by | 1%.
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With Context

NOVA - FNAL E929
Far Detector Data

Run: 10713/4 UTC Tue Jan 27, 2015
Event: 500244 / -- 05:48:26.091133824

First technique to employ a Siamese architecture to

add context to a network.

Bountiful scenarios for synergy between academic and

industry applications.

Exploration will undoubtedly improve both fields.
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Summary O

Neutrino experiments using a myriad of technologies to study numerous physics processes applying ML in the process.

ML algorithms have been adapted for a range of applications including classification, energy reconstruction, Monte Carlo

generation and bias reduction.
Many of the challenges arising from applying ML have been overcome, though many challenges still remain.

Future applications of neutrino physics can contribute to the development of ML in wider applications.

hitps://arxiv.org/abs/2008.01242
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